China Best Sales Custom Shaped Gear Nylon Plastic Transmission Part POM Spur Gear gear cycle

Product Description

Product Description

Quick Details:

Material: POM( Polyoxymethylene), Nylon
Color: Natural, White, Black
Teeth: Straight-toothed
Size: Standard Size/Customers’ Requirements
Applicable Industries: Motors, Machines, Tools and Mechanical parts, Health care and Fitness, Home appliance, and recreation, Automotive parts, etc.

 

We CAN supply standard fasteners and special fasteners including non-standard lengths and diameters, and products made to customer drawings and specifications – usually with relatively short lead times and favorable prices available, for more information please see our “Company Profile” and “Custom Service” or send an inquiry to us, we will do our best to support you.
 

Custom Service

Available Material 1. Stainless Steel: AISI303, AISI304, AISI316, AISI416, AISI420,etc.
2. Free Cutting Steel:12L14,1215, etc.
3. Brass:C37700 ( HPb59), C38500( HPb58),C27200(CuZn37), C28000(CuZn40/H62),C3604,etc.
4. Bronze: C51000, C52100, C54400,CuSn8,etc.
5. Steel:C45(K1045), C20,etc
6. Aluminum: Al6061, Al6063, etc.
7. Carbon Steel:AISI1006,AISI1571,AISI1571,etc.
8. Alloy Steel: SCM435,10B21, etc.
9. PA6,PA66,PP,PC,POM,PEEK(FOR Injection)
10. According to the customer’s requirement
Finish Electroplating: Zinc Plating, Ni Plating, Electroless Nickel Plating, Zn-Ni Alloy Plating, Tin Plating, Copper-plating, Hot-dip
Galvanizing, Black Oxide Coating, Black Anodizing, etc
Powdering, Rust Preventive Oil, Silver plating, etc
Testing Equipment CMM, Projector, Pull Tester, Automatic Optic Inspector, Projecting Apparatus
Salt Spray Test, Durometer, Coating Analyzer, Tensile Machine
Management System ISO9001/SGS/Rohs/IATF16949
Certification SGS,RoHS,Material Certification,PPAP
Production Capability Auto Lathe Turning: ODΦ1.0-20mm, Tolerance.±0.01mm
CNC Lathe Turning:ODΦ1.0-460mm,Tolerance.±0.005mm
CNC Milling:800x600mm(LxW),Tolerance.±0.05mm
Grinding: Tolerance.±0.002mm
Screw Cold Heading and Rolling: Metric 0.8-M16
Injection:300T Max
Stamping:250T Max

 

Hot Products Show

Turnery:

Cold Heading:

Casting:

Stamping:

Injection Molding:

 

Company Profile

ZheJiang CHINAMFG Precision Parts Co., Ltd has been established since June 2015. With a professional background and more than 15 years of average working year, we are a group of young people committed to promoting the development of precision manufacturing in China.

Currently, our business scope covers turning(automatic lathe and CNC lathe)cold headinginjection moldingstamping, and casting. Of course, turning processing is the most of our core part of the business. We are concentrating on non-standard and customized precision machining products and parts.

For the early stage of product design, we are able to provide process analysis and technical support. When the project is launched, we can supply the samples. Full professional service and support are guaranteed until mass production.

Our core values: Professional, Reliable, Cost-efficient, and Sustainable.

Factory Images

Testing Equipment

Packaging Specification:
1. We have several sizes of packing dimensions, which can be 10kg or 15kg per carton;
2. Normal packing:1000pcs/500pcs/250pcs per polybag, then polybags into cartons;
3. For large orders, we can provide special sizes of cartons and deliver goods on pallets or in plywood cases;
4. For customized specifications, we can provide special packing material according to your request.
 

 

 

FAQ

1. When can I get my quotation?
    We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price, please call us or tell us in your email so that we will regard your inquiry priority.

2. How can I get a sample to check your quality?
    After price confirmation, you can require samples to check our quality. If you need the samples, we will charge for the sample cost. But the sample cost can be refundable after order confirmation when your quantity of the order is up to a certain amount.

3. Can I order a small quantity?
    
Of course, you can.

4. Do you provide ODM/OEM service?
    OEM / ODM is welcome, We got a professional and creative R&D team. From the concept to finished goods, we do all ( design, prototype reviewing, tooling, and production ) in the factory.

5. How about the after-service of your product?
    We usually feedback within 24 hours after we get your complaint. And we can guarantee a satisfactory solution to every customer.

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Toy, Agricultural Machinery, Car
Hardness: Soft Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Plastic
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic gear

Can plastic gears withstand high torque and load conditions?

Plastic gears have certain limitations when it comes to withstanding high torque and load conditions. Here’s a detailed explanation of their capabilities:

Plastic gears can be designed and manufactured to handle a range of torque and load conditions, but their performance is generally inferior to that of metal gears in high-stress applications. The specific capabilities of plastic gears depend on various factors, including the chosen plastic material, gear design, tooth profile, and operating conditions.

While plastic gears may not be suitable for extremely high torque or heavy-load applications, they can still provide reliable performance in many moderate-load scenarios. Plastic gears are commonly used in applications with light to moderate loads, where their unique properties and advantages outweigh their limitations.

Some plastic materials, such as acetal (POM) and polyamide (nylon), offer good strength and wear resistance, allowing them to handle moderate torque and load conditions. These materials can be reinforced with additives or fillers to enhance their mechanical properties and increase their load-bearing capacity.

It’s important to note that when designing with plastic gears, engineers must carefully consider factors such as gear size, tooth geometry, material selection, and operating conditions. Reinforcement techniques, such as using metal inserts or reinforcing fibers, may be employed to improve the strength and load-bearing capabilities of plastic gears in certain applications.

In high torque or heavy-load applications, metal gears, particularly those made from steel or other high-strength alloys, are generally preferred due to their superior strength and durability. Metal gears offer higher load capacities, better resistance to deformation, and increased resistance to wear under extreme conditions.

Ultimately, the suitability of plastic gears for high torque and load conditions depends on the specific requirements of the application and the trade-off between the benefits of plastic gears, such as weight reduction and noise reduction, and the higher load-bearing capabilities of metal gears.

It’s recommended to consult with gear manufacturers or mechanical engineers to determine the most appropriate gear material and design for a particular application, especially when high torque and load conditions are expected.

plastic gear

Are there specific design considerations for using plastic gears?

Yes, there are specific design considerations that need to be taken into account when using plastic gears. Here’s a detailed explanation of these considerations:

1. Material Selection: Choosing the right plastic material for the gear application is crucial. Different plastic materials have varying mechanical properties, such as strength, stiffness, and wear resistance. Consider factors such as load-bearing requirements, operating temperatures, environmental conditions, and compatibility with lubricants. It’s important to select a plastic material that can withstand the specific demands of the application.

2. Gear Geometry: The design of plastic gears should consider factors such as tooth profile, module or pitch, pressure angle, and tooth thickness. The gear geometry should be optimized to ensure proper meshing, efficient power transmission, and minimal noise and vibration. The design should also take into account the limitations and capabilities of the plastic material, such as its ability to form precise tooth profiles and maintain dimensional stability.

3. Clearances and Tolerances: Plastic gears may require different clearances and tolerances compared to metal gears. The coefficient of thermal expansion, dimensional stability, and manufacturing processes of plastic materials can affect the gear clearances. It’s important to consider the thermal expansion characteristics of the specific plastic material and provide appropriate clearances to accommodate temperature variations. Tight tolerances may result in binding or increased friction, while excessive clearances can lead to backlash and reduced gear accuracy.

4. Load Distribution: Distributing the load evenly across the gear teeth is essential for preventing premature wear and failure. Consider gear design elements such as tooth profile, tooth width, and the number of teeth to optimize load distribution. Reinforcing the gear teeth with fillets or other strengthening features can help improve load-bearing capacity and reduce stress concentrations.

5. Stiffness and Deflection: Plastic gears generally have lower stiffness compared to metal gears. The design should consider the potential for deflection or deformation under load. It may be necessary to increase the gear size, modify the tooth geometry, or incorporate additional support structures to enhance stiffness and minimize deflection. Analytical tools and simulations can be employed to assess and optimize gear design for stiffness and deflection.

6. Lubrication and Wear: Proper lubrication is important for the performance and durability of plastic gears. Consider the lubrication requirements of the specific plastic material and design features that facilitate effective lubricant distribution. Pay attention to potential wear mechanisms, such as adhesive wear or abrasive wear, and incorporate measures to minimize wear, such as optimized tooth profiles, lubricant selection, and sealing mechanisms.

7. Environmental Factors: Plastic gears may be subjected to various environmental factors such as temperature extremes, humidity, chemicals, and UV exposure. Evaluate the potential impact of these factors on the gear material and design. Select plastic materials that offer resistance to environmental degradation and consider protective measures, such as coatings or encapsulation, to enhance the gear’s resistance to environmental conditions.

8. Manufacturability: Consider the manufacturability of plastic gears during the design phase. Different plastic materials may have specific requirements or limitations for manufacturing processes such as injection molding or machining. Design features that facilitate efficient and cost-effective production, such as draft angles, parting lines, and tooling considerations, should be taken into account.

By considering these specific design considerations, such as material selection, gear geometry, clearances, load distribution, stiffness, lubrication, environmental factors, and manufacturability, it’s possible to optimize the design and performance of plastic gears for various applications.

plastic gear

What are the advantages of using plastic gears in machinery?

Plastic gears offer several advantages when used in machinery. Here’s a detailed explanation of the advantages of using plastic gears:

  • Lightweight: Plastic gears are significantly lighter in weight compared to metal gears. This lightweight characteristic is particularly beneficial in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Low Noise and Vibration: Plastic gears have inherent damping properties, which help reduce noise and vibration levels during operation. The ability to absorb and dissipate vibrations leads to quieter machinery, making plastic gears suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment.
  • Corrosion Resistance: Certain plastic materials used in gear manufacturing exhibit excellent resistance to corrosion and chemicals. This makes plastic gears suitable for applications in corrosive environments, where metal gears may suffer from degradation or require additional protective coatings.
  • Self-Lubrication: Some plastic materials used for gear manufacturing have self-lubricating properties. These materials can reduce friction and wear between gear teeth, eliminating the need for external lubrication. Self-lubricating plastic gears can simplify maintenance requirements and reduce the risk of lubricant contamination or leakage in machinery.
  • Cost-Effective: Plastic gears can be more cost-effective compared to metal gears, especially in large-scale production. Plastic materials are often less expensive than metals, and the manufacturing processes for plastic gears can be more efficient, resulting in lower overall production costs. This cost advantage makes plastic gears an attractive option for applications where budget considerations are important.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Electrical Insulation: Plastic gears provide electrical insulation properties, which can be advantageous in machinery where electrical or electronic components are in close proximity to the gears. The electrical insulation helps prevent the risk of electrical short circuits or interference caused by metal gears coming into contact with conductive parts.

It’s important to note that while plastic gears offer unique advantages, they also have limitations. They may not be suitable for applications requiring extremely high torque, high temperatures, or where precise positioning is critical. The selection of plastic gears should consider the specific requirements of the machinery and the mechanical properties of the chosen plastic material.

China Best Sales Custom Shaped Gear Nylon Plastic Transmission Part POM Spur Gear gear cycleChina Best Sales Custom Shaped Gear Nylon Plastic Transmission Part POM Spur Gear gear cycle
editor by CX 2023-10-08